Preclinical evaluations of acellular biological conduits for peripheral nerve regeneration
نویسندگان
چکیده
Various types of natural biological conduits have been investigated as alternatives to the current surgical standard approach for peripheral nerve injuries. Autologous nerve graft, the current gold standard for peripheral nerve damage, is limited by clinical challenges such as donor-site morbidity and limited availability. The purpose of this study was to evaluate the efficacy of using acellular xenographic conduits (nerve, artery, and dermis) for the repair of a 1.2 cm critical size defect of peripheral nerve in a rodent model. Four months post surgery, the animal group receiving acellular artery as a nerve conduit showed excellent physiological outcome in terms of the prevention of muscle atrophy and foot ulcer. Histological assessment of the bridged site revealed excellent axon regeneration, as opposed to the nonrepaired control group or the group receiving dermal conduit. Finally, the study evaluated the potential improvement via the addition of undifferentiated mesenchymal stem cells into the artery conduit during the bridging procedure. The mesenchymal stem cell-dosed artery conduit group resulted in significantly higher concentration of regenerated axons over artery conduit alone, and exhibited accelerated muscle atrophy rescue. Our results demonstrated that xenographic artery conduits promoted excellent axonal regeneration with highly promising clinical relevance.
منابع مشابه
Preparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration
Background: Tissue engineering is a developing multidisciplinary and interdisciplinary field involving the use of bioartificial implants for tissue remodeling with the target for repair and enhancing tissue or organ function. Acellular nerve has been used in experimental models as a peripheral nerve substitute. The purpose of the present study was to evaluate the mechanical and histological cha...
متن کاملOvercoming short gaps in peripheral nerve repair: conduits and human acellular nerve allograft.
Nerve conduits and acellular nerve allograft offer efficient and convenient tools for overcoming unexpected gaps during nerve repair. Both techniques offer guidance for migrating Schwann cells and axonal regeneration though utilizing very different scaffolds. The substantially greater amount of animal and clinical data published on nerve conduits is marked by wide discrepancies in results that ...
متن کاملساخت و بهینه سازی کانال هدایت عصبی ژلاتین/ نانو شیشه زیستی جهت ترمیم عصب محیطی
Introduction & Objective: Peripheral nerve injury is common in trauma patients and 4.5% of all soft-tissue injuries are accompanied by defects of peripheral nerve. Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Designed conduits com-prised of natural and synthetic materials are now widely used in the construction of damaged tissues. The aim of thi...
متن کاملEvaluation of peripheral nerve regeneration through biomaterial conduits via micro‐CT imaging
OBJECTIVE Hollow nerve conduits made of natural or synthetic biomaterials are used clinically to aid regeneration of peripheral nerves damaged by trauma or disease. To support healing, conduit lumen patency must be maintained until recovery occurs. New methods to study conduit structural integrity would provide an important means to optimize conduits in preclinical studies. We explored a novel ...
متن کاملRecovery of Peripheral Nerve with Massive Loss Defect by Tissue Engineered Guiding Regenerative Gel
OBJECTIVE Guiding Regeneration Gel (GRG) was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated. BACKGROUND Many ...
متن کامل